Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 403

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Computer code analysis of irradiation performance of an annular mixed oxide fuel element

Yokoyama, Keisuke; Uwaba, Tomoyuki

Journal of Nuclear Science and Technology, 60(10), p.1219 - 1227, 2023/10

 Times Cited Count:0 Percentile:0.01(Nuclear Science & Technology)

no abstracts in English

Journal Articles

Study on evaluation method of kernel migration of TRISO fuel for High Temperature Gas-cooled Reactor

Fukaya, Yuji; Okita, Shoichiro; Sasaki, Koei; Ueta, Shohei; Goto, Minoru; Ohashi, Hirofumi; Yan, X.

Nuclear Engineering and Design, 399, p.112033_1 - 112033_9, 2022/12

 Times Cited Count:0 Percentile:0.01(Nuclear Science & Technology)

Kernel migration of TRi-structural ISOtropic (TRISO) fuel for High Temperature Gas-cooled Reactor (HTGR) has been analyzed to investigate the potential dominating effects. Kernel migration is a major fuel failure mode and dominant to determine the lifetime of the fuel for High Temperature engineering Test Reactor (HTTR). However, this study shows that the result and reliability depend on the evaluation method. The evaluation method used in this study takes into account of actual distribution of Coated Fuel Particles (CFPs) and the resulting heterogeneous fuel temperature calculation with such distribution. The result shows that the Kernel Migration Rate (KMR) is predicted to be about 10% less compared with the most conservative evaluation.

Journal Articles

Development of the evaluation method for the mobile radioactive contaminants for assessing public exposure risk in accidental events during decommissioning of nuclear power station

Sasagawa, Tsuyoshi; Shimada, Taro; Takeda, Seiji

Proceedings of 31st International Conference Nuclear Energy for New Europe (NENE2022) (USB Flash Drive), 8 Pages, 2022/12

In the risk assessment of the decommissioning phase, the inventory of radioactivity accumulated in filters and other materials changes with the progress of dismantling work under normal conditions, and a method that can evaluate the public exposure dose during an accident in which these changes are taken into account is required. The inventories (the mobile radioactive contaminants) include filters in which radioactive dust dispersed by equipment cutting work has accumulated and combustible waste generated by decontamination work. In this study, we developed a method to evaluate the accumulation of mobile contaminants in filters by calculating the amount of dust transferred into the air during equipment cutting operations using a model that evaluates the volume of the cutting kerf width and the dispersion ratio. Furthermore, the amount of the mobile contaminants that accumulates in local filters and building filters for each equipment was evaluated using this method, taking into account differences in cutting methods (underwater or in air) and work processes, and the equipment and work processes that should be focused on during regulatory inspections were studied preliminarily. It was suggested that some equipment cut in air generate the same amount of the mobile contaminants compared to reactor internals with high radioactivity that are cut in underwater. This indicates that the mobile contaminant is one of the important indicators in nuclear regulatory inspections that influence the selection of inspection targets.

Journal Articles

Molecular dynamics study of phosphorus migration in $$Sigma$$3(111) and $$Sigma$$5(0-13) grain boundaries of $$alpha$$-iron

Ebihara, Kenichi; Suzudo, Tomoaki

Metals, 12(4), p.662_1 - 662_10, 2022/04

 Times Cited Count:2 Percentile:32.54(Materials Science, Multidisciplinary)

Phosphorus atoms in steels accumulate at grain boundaries via thermal and/or irradiation effects and induce grain boundary embrittlement. Quantitative prediction of phosphorus segregation at grain boundaries under various temperature and irradiation conditions is therefore essential for preventing embrittlement. To develop a model of grain boundary phosphorus segregation in $$alpha$$-iron, we studied the migration of a phosphorus atom in two types of symmetrical tilt grain boundaries ($$Sigma$$3[1-10](111) and $$Sigma$$5[100](0-13) grain boundaries) using molecular dynamics simulations with an embedded atom method potential. The results revealed that, in the $$Sigma$$3 grain boundary, phosphorus atoms migrate three-dimensionally mainly in the form of interstitial atoms, whereas in the $$Sigma$$5 grain boundary, these atoms migrate one-dimensionally mainly via vacancy-atom exchanges. Moreover, de-trapping of phosphorus atoms and vacancies was investigated.

Journal Articles

Development and evaluation of XRF imaging instrument for moving objects

Fuchita, Tomoki*; Urata, Taisei*; Matsuyama, Tsugufumi*; Murakami, Masashi; Yoshida, Yukihiko; Ueda, Akihiko; Machida, Masahiko; Sasaki, Toshiki; Tsuji, Koichi*

Advances in X-Ray Chemical Analysis, Japan, 53, p.77 - 87, 2022/03

X-ray fluorescence (XRF) analysis is an analytical method to obtain elemental information by detecting fluorescence X-rays emitted from a sample irradiated with X-rays. It is possible to obtain two-dimensional elemental distribution images by scanning a sample with micro X-ray beam. In this study, we developed an XRF analytical instrument to rapidly obtain the elemental distributions for moving samples on a belt conveyor by applying the micro XRF technique. X-rays were widely irradiated to the belt conveyor. The elemental distributions were measured by scanning an X-ray detector, crossing above the belt conveyor. A collimator was attached to the top of the detector to limit the analyzing area. Both detection limit and spatial resolutions for moving directions of the detector and the belt conveyor were evaluated. Finally, it was demonstrated that the multi-elemental imaging was possible with the developed XRF instrument.

Journal Articles

Initial sintering kinetics of non-stoichiometric CeO$$_{2-x}$$

Watanabe, Masashi; Seki, Takayuki*

Materials Science & Engineering B, 272, p.115369_1 - 115369_6, 2021/10

 Times Cited Count:1 Percentile:7.92(Materials Science, Multidisciplinary)

The effect of oxygen non-stoichiometry on the initial sintering behavior of CeO$$_{2}$$ was investigated. It was found that the initial sintering of the stoichiometric and hypo-stoichiometric composition was controlled by the grain boundary diffusion. The activation energies of cation diffusion were derived from initial sintering data. Moreover, it is suggested that the cation diffusion was caused by a vacancy mechanism.

JAEA Reports

Evaluation of the mass transfer coefficients for the minor actinide separation; Evaluation by the single drop method

Sakamoto, Atsushi; Kibe, Satoshi*; Kawanobe, Kazunori*; Fujisaku, Kazuhiko*; Sano, Yuichi; Takeuchi, Masayuki; Suzuki, Hideya*; Tsubata, Yasuhiro; Ban, Yasutoshi; Matsumura, Tatsuro

JAEA-Research 2021-003, 30 Pages, 2021/06

JAEA-Research-2021-003.pdf:1.81MB

Japan Atomic Energy Agency has been developing a solvent extraction process called SELECT to recover minor actinides (MA) from spent nuclear fuel. In the SELECT process, TDdDGA, HONTA, and ADAAM are used as the extractants for MA + Ln corecovery, MA/Ln separation and Am/Cm separation, respectively. These extractants do not contain phosphorus (P), and consist of carbon (C), hydrogen (H), oxygen (O), and nitrogen (N). In this study, in order to give beneficial information for designing flowsheet, the mass transfer coefficients of Ln between HNO$$_{3}$$ solution and TDdDGA or HONTA / n-dodecane solvent were evaluated by the single drop technique. Prior to the evaluation of mass transfer coefficient, we had optimized the structure of the single drop apparatus to improve accuracy of the measurement. Based on the mass transfer coefficients obtained in HNO$$_{3}$$ / TDdDGA-n-dodecane system, Ln behaviors in the counter-current extraction and back-extraction using mixer-settlers and centrifugal contactors were estimated by simple calculation, and they had a good agreement with our previous experimental results. We also confirmed the mass transfer coefficients of Ln in HNO$$_{3}$$ / HONTA - n-dodecane system are under 10$$^{-6}$$ m/s.

Journal Articles

Dating of buried wood logs and fragments for high resolution reconstruction of landslide histories; Case studies in the Japanese Alps region in the historical times

Yamada, Ryuji*; Kimura, Takashi*; Kariya, Yoshihiko*; Sano, Masaki*; Tsushima, Akane*; Li, Z.*; Nakatsuka, Takeshi*; Kokubu, Yoko; Inoue, Kimio*

Sabo Gakkai-Shi, 73(5), p.3 - 14, 2021/01

We discuss the applicability of dating methods for determining landslide chronologies in relation to the type of samples and the sampling location. Case studies are carried out with fossil wood samples buried in the colluvial soil of large-scale landslides occurred in two areas of the Japanese Alps region. Ages are determined by accelerator mass spectrometry radiocarbon dating and dendrochronological analysis using the oxygen isotope composition of tree ring cellulose. Most of ages for Dondokosawa rock avalanche are concordant with the period of AD 887 Ninna (Goki-Shichido) earthquake. Ages for Ohtsukigawa debris avalanche are not concentrated in a specific period. In order to obtain accurate age of large-scale landslide, utilizing buried large diameter tree trunk or branches with the good preservation condition has a lot of advantages because it allows us to compare the landslide chronology with historical records of heavy rainfall and large earthquakes.

Journal Articles

Molecular dynamics study of phosphorus migration in $$Sigma$$5 grain boundary of $$alpha$$-iron

Ebihara, Kenichi; Suzudo, Tomoaki

Proceedings of Joint International Conference on Supercomputing in Nuclear Applications + Monte Carlo 2020 (SNA + MC 2020), p.65 - 69, 2020/10

Phosphorus (P) is known as one of the elements which cause the grain boundary (GB) embrittlement in steels and its GB segregation is promoted by the increase of vacancies and self-interstitial atoms due to irradiation. Thus we have been developing the rate-theory model for estimating GB P segregation under several temperatures and irradiation conditions. Because the model does not include the trapping and de-trapping processes properly, however, the model cannot calculate GB P coverage which is measured by experiments. As for the de-trapping process, so far, we have considered the migration of a P atom in the GB region of $$Sigma$$3 symmetrical tilt GB using molecular dynamics (MD). In the current study, we also simulated the P migration in $$Sigma$$5 GB using MD and compared the result with that of $$Sigma$$3. As a result, at 800K, it was found that a P atom cannot migrate in $$Sigma$$5 without vacancies while a P atom can migrate between iron atoms in $$Sigma$$3.

Journal Articles

Application of photoluminescence microspectroscopy; A Study on transfer of uranyl and europium ions on dry silica gel plate

Kusaka, Ryoji; Watanabe, Masayuki

Journal of Nuclear Science and Technology, 57(9), p.1046 - 1050, 2020/09

 Times Cited Count:0 Percentile:0.01(Nuclear Science & Technology)

Journal Articles

Evaluation and mitigation of reactive ion etching-induced damage in AlGaN/GaN MOS structures fabricated by low-power inductively coupled plasma

Nozaki, Mikito*; Terashima, Daiki*; Yoshigoe, Akitaka; Hosoi, Takuji*; Shimura, Takayoshi*; Watanabe, Heiji*

Japanese Journal of Applied Physics, 59(SM), p.SMMA07_1 - SMMA07_7, 2020/07

 Times Cited Count:2 Percentile:12.5(Physics, Applied)

AlGaN/GaN metal-oxide-semiconductor (MOS) structures were fabricated by low-power inductively coupled plasma reactive ion etching and chemical vapor deposition of SiO$$_{2}$$ dielectrics on the etched surfaces, and they were systematically investigated by physical and electrical characterizations in an effort to develop a low-damage recessed gate process. The comprehensive research demonstrates the significant advantages of the proposed low-damage recessed gate process for fabricating next-generation AlGaN/GaN MOS-HFET devices.

Journal Articles

Enhancement of domain-wall mobility detected by NMR at the angular momentum compensation temperature

Imai, Masaki; Chudo, Hiroyuki; Matsuo, Mamoru; Maekawa, Sadamichi; Saito, Eiji

Physical Review B, 102(1), p.014407_1 - 014407_5, 2020/07

 Times Cited Count:6 Percentile:38.95(Materials Science, Multidisciplinary)

Journal Articles

Computer code analysis of irradiation performance of axially heterogeneous mixed oxide fuel elements attaining high burnup in a fast reactor

Uwaba, Tomoyuki; Yokoyama, Keisuke; Nemoto, Junichi*; Ishitani, Ikuo*; Ito, Masahiro*; Pelletier, M.*

Nuclear Engineering and Design, 359, p.110448_1 - 110448_7, 2020/04

 Times Cited Count:1 Percentile:12.16(Nuclear Science & Technology)

Coupled computer code analyses of irradiation performance of axially heterogeneous mixed oxide (MOX) fuel elements with high burnup in a fast reactor were conducted. Post-irradiation experiments revealed local concentration of Cs near the interfaces between MOX fuel and blanket columns including the internal blanket of the fuel elements as well as an increase in their cladding diameters. The analyses indicated that the local Cs concentration occurred as a result of Cs axial migration from the MOX fuels toward the blanket pellets near the interfaces. Swelling of the blanket pellets induced by the formation of low-density Cs-U-O compound was not sufficient to cause pellet-to-cladding mechanical interaction (PCMI). The PCMI analyzed in the MOX fuel column regions was insignificant, and the cladding diameter increases were caused mainly by void swelling in cladding and irradiation creep due to fission gas pressure.

Journal Articles

Current-induced modulation of coercive field in the ferromagnetic oxide SrRuO$$_{3}$$

Yamanouchi, Michihiko*; Oyamada, Tatsuro*; Sato, Koichi*; Ota, Hiromichi*; Ieda, Junichi

IEEE Transactions on Magnetics, 55(7), p.1400604_1 - 1400604_4, 2019/07

 Times Cited Count:4 Percentile:27.48(Engineering, Electrical & Electronic)

Journal Articles

Study on chemisorption model of cesium hydroxide onto stainless steel type 304

Nakajima, Kunihisa; Nishioka, Shunichiro; Suzuki, Eriko; Osaka, Masahiko

Proceedings of 27th International Conference on Nuclear Engineering (ICONE-27) (Internet), 8 Pages, 2019/05

Cesium chemisorption models were developed for estimation of amount of cesium chemisorbed onto stainless steel type 304 (SS304) during light water reactor severe accident. However, existing chemisorption models cannot accurately reproduce experimental results. In this study, a modified cesium chemisorption model was constructed based on a penetration theory for gas-liquid mass transfer with chemical reaction and was able to adequately describe effects on concentration of cesium hydroxide in gaseous phase and silicon content in SS304. It was found that the modified model can more accurately reproduce the experimental data than the existing model.

Journal Articles

Environmental research on uranium at the Ningyo-Toge Environmental Engineering Center, JAEA

Sato, Kazuhiko; Yagi, Naoto; Nakagiri, Toshio

Proceedings of 27th International Conference on Nuclear Engineering (ICONE-27) (Internet), 6 Pages, 2019/05

no abstracts in English

Journal Articles

Saturation behavior of thermal ratcheting strain due to long range travel of temperature distribution

Okajima, Satoshi; Wakai, Takashi

Nihon Kikai Gakkai 2017-Nendo Nenji Taikai Koen Rombunshu (DVD-ROM), 5 Pages, 2017/09

It was reported that the long distance travel of temperature distribution causes a new type of thermal ratcheting, even in the absence of primary stress. In this paper, based on the results of inelastic finite element analyses, we investigated saturation behavior of thermal ratcheting strain due to long range travel of temperature distribution. As a result, we revealed that the long distance travel of temperature distribution generates plastic strain distribution made maximum at the central part. Because of the shape of the generated strain distribution, the residual stress accumulates even at the central part of the region passed through the temperature distribution. In the case with excessive long traveling of temperature distribution, the region with plastic deformation extended to the surrounding region. Otherwise, sufficient magnitude of residual stress to cause shakedown behavior accumulated on entire region, and the accumulation of the plastic strain saturated.

JAEA Reports

Diffusion experiment using block sample of the Toki granite

Hama, Katsuhiro; Iwasaki, Riyo*; Morikawa, Keita*

JAEA-Technology 2017-015, 45 Pages, 2017/07

JAEA-Technology-2017-015.pdf:16.57MB

Tono Geoscience Center of Japan Atomic Energy Agency has been carrying out the Mizunami Underground Research Laboratory Project. The goal of mass transport study is to obtain a better understanding of mass transport phenomena in the geological environment as well as to develop technologies for measurement of the mass transport parameters, model construction, numerical analysis and validation of those technologies. This experiment was planned to understand the influence of the microscopic structure in the rock mass on the mass transport property. The diffusion experiment using rock sample was carried out. The macroscopic and microscopic observations were carried out to understand the distribution of tracer (uranine) after the diffusion experiment. The uranine was observed in the plagioclase, in the grain boundary and in the microfracture in the mineral grains. These results suggested that distribution of mineral and of microfracture could affect the diffusion property of uranine.

JAEA Reports

Data acquisition of mass transport parameters

Iwasaki, Riyo*; Hama, Katsuhiro; Morikawa, Keita*; Hosoya, Shinichi*

JAEA-Technology 2016-037, 62 Pages, 2017/02

JAEA-Technology-2016-037.pdf:8.69MB

Mass transport study is mainly performed as part of Phase III in the Mizunami Underground Research Laboratory Project. In Phase III, the goal of mass transport study is to obtain a better understanding of mass transport phenomena in the geological environment as well as to develop technologies for measurement of the mass transport parameters, model construction, numerical analysis and validation of those technologies. This study was planned to understand the influence of the geological characteristics of fracture on the mass transport parameters.

JAEA Reports

User manual of Soil and Cesium Transport (SACT), a program to predict long-term Cs distribution using USLE for soil erosion, transportation and deposition

Saito, Hiroshi; Yamaguchi, Masaaki; Kitamura, Akihiro

JAEA-Testing 2016-003, 68 Pages, 2016/12

JAEA-Testing-2016-003.pdf:6.4MB

JAEA has developed a simple and fast simulation program "SACT" (Soil and Cesium Transport) to predict a long-term distribution of Cs deposited on the land surface due to the Fukushima Daiichi Nuclear Power Station accident. It calculates soil movement (erosion, transportation, deposition) and Cs migration, and predicts its future distribution with the assumption that it is adhered to soil. SACT uses USLE (Universal Soil Loss Equation) for potential soil loss and simple equations for soil transportation and deposition. The Cs amount is predicted by the amount of soil movement and Cs concentration ratio for each grain-size of soil. SACT is characterized by its simplicity which enables fast calculation for wide area for long-term duration using existing equations. Data for parameters are widely available and site-specific calculations are possible using data of the targeted area. This manual provides useful and necessary information to users and facilitates the use of SACT widely.

403 (Records 1-20 displayed on this page)